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ABSTRACT
Typical approaches for action recognition in videos rely on labelled start and endtimes for training.
This supervision is not only expensive to acquire but importantly highly subjective.
In this paper, we:
• Use single timestamps located around each action instance in untrimmed videosas weak supervision;
• Temporally refine the supervision used to train a classifier, starting from the singletimestamps;
• Testing the classifier on trimmed video segments, we show that our method con-verges to the discriminative action segments, for 3 different datasets (THUMOS,BEOID and EPIC Kitchens).
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Figure 1: Replacing action boundaries with sampling distributions in an untrimmed video, given single timestamps (coloured dots at the centre of each plateau). The initial distributions mayoverlap (e.g. ‘put jar’, ‘take spoon’) and contain background frames. We iteratively refine the distributions using the classifier response during training.

LINKS
Code available at:

bitbucket.org/dmoltisanti/action_recognition_single_timestamps

Project webpage:
people.cs.bris.ac.uk/damen/single_timestamps

COMPARING LEVELS OF TEMPORAL SUPERVISION

Figure 2: Different actions per video for various datasets.
Set Dataset N. of

classes
N. of
videos

N. of
actions

Avg video
length

Avg classes
per video

Avg actions
per video

Tra
in THUMOS 14 20 200 3003 208.90 1.08 15.01BEOID 34 46 594 61.31 5.09 12.91EPIC Kitchens 274 79 7060 477.37 34.87 89.36

Tes
t THUMOS 14 20 210 3307 217.16 1.09 15.74BEOID 34 12 148 57.78 6.58 12.33EPIC Kitchens 274 26 1949 399.62 32.08 74.96

Table 1: Datasets information. Average video length is in seconds.
Baseline U. Net[2] Ours
Supervision APV Video-level TS TS in GT Full
THUMOS 14 1.08 64.92 66.68 64.53 67.10BEOID 5.09 28.37 85.14 88.51 87.83EPIC Kitchens 34.87 2.20 26.22 32.53 35.97

Table 2: Comparison between different levels of temporal supervision. APV indicates theaverage number of unique actions per training video.
CONVERGENCE
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Figure 3: Average confidence of selected update proposals over training epochs.

APPROACH
• We start from single timestamps, roughly located close to the action instances;
• We replace unavailable action boundaries with sampling distributions modelled bya plateau function:

g(x | c, w, s) = 1

(es(x−c−w) + 1)(es(−x+c−w) + 1)

c

2w

s

• We initialise one sampling distribution per action, centring the plateau on the singletimestamp;
• Initial plateaus might enclose irrelevant frames. We thus update the samplingdistributions, fitting multiple update proposals per distribution, using the softmaxscores;
• We rank the proposals to select the most confident updates, using a CurriculumLearning approach. We reward proposals whose plateaus contain frames that onaverage score higher than the frames enclosed by the current plateau;
• We iteratively update the sampling distributions until convergence, which is mea-sured using the proposals’ scores.

UPDATING THE SAMPLING DISTRIBUTIONS

update proposals
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Figure 4: Fitting and ranking update proposals.
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Figure 5: Updating the sampling distribution using the classifier response - example from action ‘open fridge’ inEPIC Kitchens [1]. Different colours indicate different training iterations.
RESULTS
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Figure 6: Qualitative results on the three datasets. Ground truth frames used only for plotting.

Dataset CL h Before update After update

THUMOS 14
0.25 26.10 28.880.50 32.69 55.150.75 33.59 56.421.00 63.41 63.53

BEOID
0.25 47.97 52.700.50 71.62 83.110.75 74.32 83.111.00 64.86 70.27

EPIC Kitchens
0.25 20.47 22.830.50 21.39 25.350.75 20.73 23.861.00 23.55 24.17

Table 3: Top-1 accuracy obtainedwith single timestampsupervision before and after update.
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