
Learning Discriminative Embeddings for Object Recognition on-the-fly

Miguel Lagunes-Fortiz1,2 Dima Damen2 and Walterio Mayol-Cuevas2

Abstract— We address the problem of learning to recognize
new objects on-the-fly efficiently. When using CNNs, a typi-
cal approach for learning new objects is by fine-tuning the
model. However, this approach relies on the assumption that
the original training set is available and requires high-end
computational resources for training the ever-growing dataset
efficiently, which can be unfeasible for robots with limited
hardware. To overcome these limitations, we propose a new
architecture that: 1) Instead of predicting labels, it learns
to generate discriminative and separable embeddings of an
object’s viewpoints by using a Supervised Triplet Loss, which is
easier to implement than current smart mining techniques and
the trained model can be applied to unseen objects. 2) Infers an
object’s identity efficiently by utilizing a lightweight classifier
in the features embedding space, this keeps the inference time
in the order of milliseconds and can be retrained efficiently
when new objects are learned. We evaluate our approach on
four real-world images datasets used for Robotics and Com-
puter Vision applications: Amazon Robotics Challenge 2017 by
MIT-Princeton, T-LESS, ToyBoX, and CORe50 datasets. Code
available at [1].

I. INTRODUCTION

Over the past few years, the robotics and computer vision
community have adopted Convolutional Neural Networks
(CNNs) as the standard approach for addressing object
recognition and localization [2]. Despite the human-level
performance in recognition accuracy, CNNs are still very
limited compared with the cognition capabilities of humans
[3]. One of these limitations is the ability to learn new
instances efficiently, without catastrophically forgetting the
previously learned ones, while considering variations in pose
and appearance.

Learning new objects on-the-fly, that is, able to process
objects as soon as they are being perceived, is a desirable
capability for robots and intelligent systems working within
dynamic environments [4], [5].

While continuous fine-tuning approaches have been ex-
plored [6] it is an unfeasible approach for most autonomous
robotic platforms given three main limitations: 1) It as-
sumes access to the original training set, which can easily
reach the order of TBs even with low-quality images. 2)
It requires high end dedicated computational resources for
training the model efficiently and 3) The time required for
retraining increases linearly as more items are introduced.

Miguel Lagunes-Fortiz thanks the Mexican Council of Science and
Technology (CONACyT) for sponsoring his studies with the scholarship
number 686450

1 Bristol Robotics Lab, UK University of Bristol, Bristol, UK
mike.lagunesfortiz@bristol.ac.uk

2 Department of Computer Science, University of Bristol, Bristol, UK
{Dima.Damen, Walterio.Mayol-Cuevas}@bristol.ac.uk

Features Embedding Space

Known Novel

Toilet brushGloves Tennis balls

Training Deployment

Fig. 1. The problem we aim to solve is to learn new objects without
re-training the CNN model. To do so, we teach a model to maximize
the separability (blue arrow) and minimize the intra-class distance
(red arrows) of embeddings in a supervised manner. During de-
ployment, the model can produce embeddings with these properties
even for objects not seen during training (novel objects). In order
to perform classification, we use a lightweight classifier such as
Nearest Neighbours for matching embeddings with unknown and
known labels.

These limitations motivate for developing models that will
not require fine-tuning for learning new objects.

The general idea in our approach is to design a Deep
Learning model that learns two tasks simultaneously:

1) Learns the concept of “Object similarity” by mapping
object’s viewpoints from the same class close to each
other and dissimilar ones farther apart, in a feature
embedding space IRn.

2) Learns a powerful visual representation by combining
a metric learning and fully supervised losses.

By doing so, the model learns to generate discriminative
and separable embeddings generically in the features space
IRn, as depicted in Fig. 1, which then can be classified by
a lightweight classifier such as Nearest Neighbours or a
Support Vector Machine [7]. New objects can be mapped to
IRn using the same learned model, and only the lightweight
classifier has to be retrained in order to get the probabilities
considering all learned objects.

We evaluate our approach in four datasets used for multi-
view object recognition: T-LESS, ToyBox, Amazon Robotics
Challenge 2017 by Princeton-MIT and CORe50. We use
precision as the evaluation metric.

Contribution: The primary goal in our paper is to show
that a single CNN model can be trained effortlessly to
generate discriminative and separable features which can be
useful for learning new objects on-the-fly efficiently.

II. RELATED WORK

The most straightforward strategy for learning from a
continuous stream of data using Convolutional Neural Net-
works (CNN’s) is to retrain the model (entirely or just a
few layers) using the updated training set [8], [9], [6]. While
these approaches offer state-of-the-art performance, it is an
unfeasible approach for many autonomous and mobile robots
with limited computational resources that are required to
learn new objects efficiently.

An alternative to continuous fine-tuning is the Metric
Learning approach, which instead of predicting labels, the
model is trained to learn the concept of “similarity” by
bringing close to each other embeddings from the same class
and far apart otherwise, in a feature embedding space IRn.

Currently, the best approaches to metric learning employ
state of the art CNNs [10], [11]. A pioneering model is the
Siamese architecture [12] which utilizes the Contrastive Loss
(Eq. 1) defines as:

Lcontrastive = (1−Y)
1
2

D(X1,X2)+(Y)
1
2
[m−D(X1,X2)]+

(1)
Where X1,X2 are pairs of images, that can be from the

same or different objects, indicated in the vector Y . A
CNN fθ with weights θ is used for mapping images to an
embedding space IRn (Eq. 2), where the Euclidean distance
(Eq. 3) d is used for computing the similarity between the
two embeddings. Dot product, Mahalanobis distance or even
a trainable metric as in [13], can be used as an alternative to
Eq. 3. Finally, the [·]+ operator denotes the hinge function
equivalent to max(0, ·) function.

D(Xa,Xb) = d(fθ (Xa), fθ (Xb)) (2)

d(xa,xb) =
1
2
‖xa− xb‖2

2 (3)

While the Siamese architecture has been used for One-
Shot learning [14], dimensionality reduction [12], image
classification [15] and cross-domain [4] with competitive
results, it is unable to learn similarity and dissimilarity at
the same time since the pairs are either from the same or
different object.

This limitation is overcome by the Triplet architecture
[16], which encourages a relative distance constraint between
similar and dissimilar images simultaneously in the Triplet
Loss (Eq 4).

Ltriplet = [D(Xa,Xp)−D(Xa,Xn)+m]+ (4)

The Triplet architecture became the most widely used
approach for metric learning [17], with two main limitations:

1) Selecting the triplets in (Eq. 4) is a non-trivial and
crucial task [16], given that fθ quickly learns to
correctly map most trivial triplets, it leaves a large
fraction of all triplets uninformative and makes hard
mining triplets a crucial step for training [18].

2) The loss is defined in terms of small groups of images
in the mini-batch and does not consider a global
structure of the training set, which might lead to sub-
optimal solutions depending on the mini-batch size.

Thus, many variants of the Triplet architecture aim to
address these issues. Concerning mini-batch formation, a
first approach for hard mining triplets is the Lifted Struc-
ture [7] approach, which consists of incorporating on-line
hard negative mining by comparing each positive example
against all negative examples in the training mini-batch.
The Quadruplet [19] architecture incorporates an additional
negative example in the mini-batch aiming to facilitate the
clustering of negative examples. Quintuple [20] and N-pair
[21] models are an extension of this idea.

For selecting the best triplets, [22] proposes a smart
mining trainable module that forms triplets from a pool com-
posed of semi-hard positive and negative samples. Similarly,
[23] proposes a trainable module named PDDM (Position-
Dependant Deep Metric) that scores the hardest negative
example within the mini-batch, based on relative and global
distances within the batch. More recently, [24] proposed
Batch Hard forming, where the core idea is to form batches
by randomly sampling P classes (i.e., instances) and then se-
lecting the hardest positive and the hardest negative samples
within the batch. An orthogonal approach for speeding up
the training is Angular Loss [25] where authors propose an
additional angular loss term that constrains the upper bound
angle in each triplet triangle.

For addressing the lack of global structure in the metric
space, [26] proposes to combine Sample-based methods
(such as Triplets or Softmax) with Set-Based methods (such
SMVs). This approach is trained with a Max-Margin Loss,
which improves the separability of the embeddings by max-
imizing the possible inter-class margin by using Support
Vector Machines (SVMs). The main limitation, having to
train the model set-based offline and the sample-based on-
line.

In [15], authors propose a global loss that tries to mini-
mize the variance within each embedding distribution and
maximize the mean value of the distances between non-
matching pairs. The drawback of this method is requiring
the complete training set loaded in memory, in order to
estimate variance and means in each class. Center Loss [27]
aims for the same goal of minimizing the intra-class distance
of the embeddings by learning a center for each class and
penalizing the distances between the embeddings and their
corresponding class centers. It works jointly with Softmax
loss. Following the idea of making more discriminative
embedding, [28] combines the Triplet and Center Loss for
multi-view object retrieval.

The data points in the embedding space can be used for
person re-identification [16], [24], clustering and retrieval
[7], [21], [29], [10], [7], [28] and object recognition [14],
[4] and [5]. To do so, an additional classifier has to be used.
The two common approaches are using Nearest Neighbours
and Support Vector Machines.

Embedding Space

anchor

positive

negative

anchor

positive

negative

Triplets Supervised Triplet (ST)

*all weights are shared

Plug adapter

Mobile Phone

softmax

loss

triplet lossResnet-50

Resnet-50

Resnet-50

(a) Training

Features Embedding Space

Known

Novel

Plug adapter

Mobile phone 1

Mobile phone 2
Resnet-50

Features Embedding Space

Labeled embedings

Plug adapter

Mobile phone 1

Mobile phone 2

Resnet-50

Query object

Embeddings projection

Embeddings classification

(b) Deployment

Fig. 2. Proposed Object Recognition on-the-fly framework. Our Supervised Triplet Network (a) is trained with triplets of images, a soft margin triplet loss
is obtained from the triplets, and a softmax loss is obtained by utilizing each image and its label. For deployment (b), the network is simplified to a single
branch, since all weights are shared. Additionally, we remove the softmax layer, leaving the network to produce agnostic embeddings of 128-dimension.
With the simplified network, we first project images with known labels into a common embeddings space, these images can depict objects never sought
during the training of the model. For performing classification, the model will project an image’s embedding close to the most similar labeled embeddings,
for which a light-weight classifier, such as nearest neighbors, can be used to estimate the unknown class.

III. PROPOSED METHOD

Our approach consists of dividing the recognition problem
into two stages: Embeddings generation and Classification.
We use a CNN to generate separable and discriminant
embeddings from an object’s viewpoints in a generic fashion,
so then the model can be applied to unseen objects. With sep-
arable and discriminant features projected in an embedding
space, a lightweight classifier such as Nearest Neighbors or
a Linear Support Vector Machine can be used for retrieving
the classification probabilities efficiently. When a new object
is needed to learn, only the lightweight classifier has to be
re-train.

Feature generation and classification are typically done
end-to-end when using CNNs [33]. However, this approach
is not suitable for autonomous robots with limited compu-
tational resources, considering that it would require high
memory capacity for storing the ever-growing image dataset
and high computational resources for training the CNN
efficiently on board. Additionally, the learned features by
using full supervision only, such by a Cross Entropy Loss, are
not discriminative enough since the optimization is focused
only in finding decision boundaries that separate the class
manifolds [28].

In the other hand, Metric Learning approaches such as the
Triplet architecture [34] aims to learn a more general concept
of image similarity that can be useful for estimating the
similarity in viewpoints of novel objects. However, learning
such a concept requires a significant amount of training
examples (e.g. using tens of millions, compared to only
millions, lead to a relative reduction error of 60% in [16]) and
selecting the tuples of images in the mini-batches is still an
open research field [11], which can be a difficult to address

when learning from few examples.
Thus, we propose a framework that combines the benefits

of both approaches by utilizing a fully supervised loss with
a metric loss as regularizer as shown in Fig. 2(a). The loss
function in our Supervised Triplet is defined by:

LSTriplet = LSo f tmax +λ ·LTriplet (5)

LTriplet = [d(fθ (Xa), fθ (Xp)−d(fθ (Xa), fθ (Xn)+m]+ (4)

LSo f tmax =− log
(

exclass

∑i exi

)
(6)

Each loss term works as follows:

A. Softmax loss

As studied in [27] and [28], using a fully supervised loss
such as Softmax Cross Entropy can be beneficial for Metric
Learning models. The idea behind is to use the Softmax loss
for generating manifolds efficiently (e.g., by utilizing all the
images in the mini-batch as oppose to the very expensive
time required by triplets [10]).

B. Triplet Loss

Similar to Center Loss [27], is it possible to learn a more
discriminative visual representation when the Softmax Cross
Entropy loss is constrained by penalizing the similarity of the
features in the Embeddings Space IRn. We use Euclidean
distance for comparing the similarity of two embeddings.
As oppose to [27], we use the triplet loss, which brings
embeddings from a similar class together and away otherwise
without the need of computing centroids from every class, in

train train test

(a) T-LESS

train train test

(b) ToyBox

train train test

(c) Amazon Robotics Challenge

train train test

(d) CORe50

Fig. 3. Object Recognition Datasets. In T-LESS [30], the model has to recognize unseen viewpoints. In Toybox [31] we used the hodgepodge videos for
training and translations across the three axes for testing. We use ARC as in [4]. We use training and testing scenes as proposed by [32]

every training step. As studied by [28], the metric loss has
to be attenuated by a factor λ in order to give priority to the
manifolds generated by the Softmax Cross Entropy loss, this
is the only additional hyper-parameter in our model respect
to a Triplet architecture [16].

So far, the CNN model can produce cluster-like embed-
dings from an object’s viewpoints, which can be applied
to objects not seen during training. However, an additional
classifier is required in order to compute the prediction prob-
abilities considering all the objects learned. Linear Support
Vector Machines and Nearest Neighbors are common choices
for image retrieval, face identification and object recognition.

C. Recognizing novel objects

The methodology for projecting images into a common
Features Embeddings Space and computing the prediction
probabilities is the following:

1) First, the model can be compacted as shown in Fig.
2(b). Since all the weights in the model are shared,
we can remove the two additional siblings and leave
the model with a single branch. Additionally, we also
remove the fully connected layer that was used for the
Cross-Entropy Loss.

2) For learning a new object, we project the training
images to the Feature Embeddings Space IRn and we
associate each data point with the respective label.

3) We retrain the lightweight classifier for making pre-
dictions by taking into account the added data points
and labels in IRn.

4) For recognizing the object, we project a test image
to IRn, and the classifier will compute the prediction
probabilities.

The training examples are stored as embeddings, so there
is no need for saving image files. Any CNN architecture
can be trained with Eq. 5 for producing the embeddings.
Similarly, any classifier can be used for predicting the
decision boundaries and probabilities in IRn. In the next
section, we describe how the selection of the classifiers
affects performance and computing times.

IV. EXPERIMENTS

We selected ResNet-50 [35] as the backbone CNN for
generating features and K-Nearest Neighbors with k = 5 as
the classifier in order to make our model comparable with
the Amazon Robotics Challenge 2017 winner [4], who uses
the same configuration. A fully connected layer generates
the embeddings with a dimension of 128 elements. Selecting

the embedding size has been studied by [16] and [36] in the
context of face recognition and image retrieval, choosing a
dimension of 128 elements leads to both faster inference and
higher accuracy compared to higher dimensions.

As the first baseline, we selected ResNet-50 trained with
ImageNet, for generating embeddings and K-Nearest Neigh-
bors (k = 5) as the classifier. Since ResNet50 does not
have intermediate fully connected layers, we follow the
methodology proposed by [4] which consists in taking the
feature map after the average pooling layer and flatten it to
a 1-D vector with 2048 elements (this dimension resulted
from using a resolution of 224x224 pixels). This baseline
allowed us to explore if a model trained with a large dataset
can produce discriminative embeddings for multi-view object
recognition.

As the second baseline we selected the Triplet Architecture
since it is the most widely used Deep Metric Learning
approach [17]. We applied hard-negative mining as proposed
in [16] and [7]. The hard-negative mining consisted of taking
the 20% more difficult examples in the mini-batch and
feeding them in the next mini-bath. The sibling CNNs were
pre-trained with ImageNet as we are using a few examples
per object.

For the Triplet and Supervised Triplet (our approach) we
used a soft margin, this is m = 0 in Eq. 4, as recommended
by [24]. For the Amazon Robotics Challenge dataset, we also
compared our model against the winning team [4] and their
baseline Siamese Network [12]. We did not select [4] as a
baseline for the other datasets as it is not detailed by the
authors how to select the image pairs for single or multiple
(more than two) cross-domain datasets.

We selected four datasets that depict objects from an
egocentric view (as would be seen from a robot’s perspective
in mobile robots and manipulators) and show different poses
and viewpoints of every object. Apart from the Amazon
Robotics Challenges by Princeton-MIT (where an actual
robot took images), we selected datasets that present chal-
lenging recognition scenarios that a robot might face in real
conditions.

The first dataset is T-LESS [30], which contains 30 objects
with no relevant texture. Followed by ToyBox [31] a dataset
depicting 360 objects manipulated by a person. Toybox
allowed us to evaluate how well the model scales (we
selected ToyBox over the iCubWorld dataset [37] since, at
the submission time, the latter contains only 28 instances).
The remaining datasets are Amazon Robotics Challenge [4]
with 60 objects collected by the MIT-Princeton robot for

TABLE I
MODELS TRAINED FOR LABEL PREDICTION VS METRIC LEARNING APPROACHES

Method TLESS ToyBox ARC CORe50
CNN (Softmax) 97.31 ± 0.17 74.96 ± 0.08 92.31 ± 0.13 92.61 ± 0.26
CNN (ImageNet) 34.81 10.13 27.2 24.89
Triplet CNN 93.65 ± 1.49 56.98 ± 1.32 75.17 ± 1.49 74.14 ± 1.83
S-Triplet (ours) 98.59 ± 0.42 72.93 ± 0.54 96.09 ± 0.21 94.06 ± 0.41

Fig. 4. For finding the best λ in Eq. 5, we varied the range from
1 to 0.0001.

solving the Amazon Robotics Challenge 2017 and CORe50
[32] dataset, which shows 50 objects across different envi-
ronments and allows us to test the generalization capabilities
not only to unseen object’s poses but also new environments.
Fig. 3 contains an example of training and testing conditions
of every dataset. We perform the following experiments to
test our approach:

A. Balancing Softmax and Metric Learning Losses:
First, we followed the methodology proposed by [28]

for combining Deep Metric and Supervised Losses. The
methodology consists of relaxing the triplet loss by a factor
of λ , we followed their methodology of varying the value
from 1e-4 to 1, in steps of one order of magnitude. We use
the 80% training set for finding the best λ and evaluating on
the remaining 20%. We then use the best λ with full training
splits for the rest of the experiments. We show the results in
Fig. 4.

B. Trade off between Deep Metric Learning and Label
Prediction approaches

Here we compare the performance achieved by the models
trained for label prediction with full supervision, a model
train purely based in similarities (e.g., Deep Metric Learn-
ing) and our approach who combine both losses. As a
baseline we chose the Triplet Architecture [34], as it is the
most widely used model [7] and has higher performance
than Siamese [17]. We trained the Triplet model with the
hard mining methodology described in [34]. We trained all
the models three times and we show the mean and standard
error. Results are shown in Table I.

C. Recognizing Novel Classes:
Here we test the capabilities of each model for recognizing

novels classes on-the-fly, this is, without retraining or fine-

TABLE II
TLESS % ACCURACY TOP-1 RECOGNITION

Method Known Novel Mixed
CNN (Softmax) 99.88 ± 0.01 N/A 64.94 ± 1.07
CNN (ImageNet) 27.81 45.37 34.81
Triplet CNN 96.45 ± 1.58 91.03 ± 1.53 85.9 ± 1.47
S-Triplet (ours) 99.36 ± 0.23 96.56 ± 0.25 95.53 ± 0.21

TABLE III
TOYBOX % ACCURACY TOP-1 RECOGNITION

Method Known Novel Mixed
CNN (Softmax) 73.94 ± 0.17 N/A 47.94 ± 0.04
CNN (ImageNet) 5.88 17.91 10.13
Triplet CNN 68.23 ± 1.72 49.6 ± 1.77 53.14 ± 1.75
S-Triplet (ours) 81.52 ± 0.33 79.52 ± 0.27 72.23 ± 0.48

tuning the backbone CNN model. We followed the method-
ology proposed by [4] which consists in splitting each dataset
into a “novel” and “split” sets, two-thirds of the classes are
used for training the model and the remaining third is used
for recognition of new instances. The classes are selected
randomly, for the ARC dataset, we used the same splits as in
[4], for TLESS, CORe50 and ToyBox the splits are located
in [1]. Similarly, every model was trained three times and
we show the mean and standard error accuracy. Results are
shown in Tables II - V.

D. Embeddings association:

Here we explore how the performance is affected by utiliz-
ing Logistic Regression, a Linear Support Vector Machines
(SVM) and K-Nearest Neighbors. Results are shown in Fig.
6.

TABLE IV
ARC % ACCURACY TOP-1 RECOGNITION

Method Known Novel Mixed
CNN (Softmax) 92.31 ± 0.13 N/A 61.26 ± 0.27
CNN (ImageNet) 27.2 52.6 35.0
Siamese CNN [12] 76.9 68.2 74.12
Triplet CNN [34] 75.17 ± 1.49 58.3 ± 1.29 62.12 ± 1.57
Two-Stage
K-net + N-net [4] 93.6 77.5 88.6
S-Triplet (ours) 96.09 ± 0.21 74.21 ± 0.26 87.53 ± 0.5

TABLE V
CORE50 % ACCURACY TOP-1 RECOGNITION

Method Known Novel Mixed
CNN (Softmax) 94.22 ± 0.32 N/A 64.31 ± 0.49
CNN (ImageNet) 21.14 29.47 24.89
Triplet CNN 87.00 ± 1.49 73.13 ± 1.61 79.86 ± 1.65
S-Triplet (ours) 95.31 ± 0.29 89.03 ± 0.25 87.23 ± 0.22

(a) Known - Triplet (b) Known - ours (d) Novel - Triplet (e) Novel - ours

(g) Combined - Triplet (h) Combined - ours

Fig. 5. T-sne visualization of the baseline Triplet Architecture [34] (left) vs. our Supervised Triplet (right) for learning novel classes in CORe50. We
show the known (classes seen in training), novel (unseen object) and combined (full test set) splits and we use the labels data for coloring the clusters.

TLESS ToyBox ARC CORe50
0

10

20

30

40

50

60

70

80

90

100

P
re

c
is

io
n
 (

%
)

0

10

20

30

40

50

60

70

80

T
im

e
 (

s
e
c
s
)

SVM K-NN Log Reg Train Time

Fig. 6. We compare the performance and training time of K-Nearest
Neighbours (k = 5), Linear SVM and Logistic Regression. We use
the same training set as in Table I. We use the implementations
from the scikit-learn library [38].

V. DISCUSSION

From Table I we can see the gap in performance from a
Metric Learning and Label Predictions approaches. The gap
is more significant in domain-adaptation scenarios such as
ARC and CORe50. This decrease in performance is an inher-
ent drawback in current Metric Learning approaches based
purely in “image similarity,” since testing images depicting
objects in a different background and illumination conditions
are not similar enough to the training examples which lead
to a wrong mapping into the correct class manifold. On the
other hand, a CNN trained with a fully supervised loss dealt
better with the domain adaptation scenario. Even when the
model was not trained to be discriminative, the decision
boundaries are flexible enough to map the testing images
into the corresponding class manifold correctly.

From Table II we can conclude that all approaches were
able to map correctly unseen viewpoints of each class since

training and testing images have the same background and
illumination conditions, the Metric Learning approach was
comparable to the fully supervised. In contrast, in Table V,
we show the CORe50 results, where the Metric Learning ap-
proach struggled to recognize novel objects across different
environments.

In Table III we show the results with Toybox, the dataset
with most objects (360). For this dataset, our approach was
superior to the Metric Learning and CNN baselines, which
indicates our approach is scalable since it was able to learn
120 objects and was close to the fine-tune model in Table I.

In Table IV we compare our results with the Amazon
Robotics Challenge 2017 winner [4], our model has a
comparable performance (only 3% less). Our model utilizes
only one CNN, which translates in half of the parameters
to be trained and saved. Additionally, our approach does not
require a careful selection of the examples for learning the
concept of “similarity” since it learns such a concept in com-
bination with a Softmax loss, which is trained efficiently for
generating manifolds. Efficient optimization means that our
model does not require any cumbersome mining technique
nor distance metrics, which makes implementation easier
across current recognition datasets.

Finally, related to the selection of the additional classifier
(Fig. 6), we found Linear SVM and Logistic regression
concisely more useful that K-Nearest Neighbors with k=5,
at expenses of slightly higher computational times.

In conclusion, our Supervised Triplet, had a much closer
performance to the fine-tuned models across all datasets.
Thus, the strategy of combining fully supervised and metric
learning losses resulted in a model that generates discrim-
inate and separable embeddings (as shown in Fig. 5) for
learning new objects on-the-fly. Combining these losses
involves choosing a factor λ which, as shown in Fig. 4,
starting with a value of 0.1 and moving to nearby values
resulted in being useful across all datasets.

REFERENCES

[1] M. Lagunes-Fortiz, “Pytorch implementation of supervised-
triplet-network.” https://github.com/MikeLagunes/
Supervised-Triplet-Network, 2019.

[2] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/accuracy trade-offs for modern convolutional object detectors,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[3] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behavioral and
Brain Sciences, vol. 40, p. e253, 2017.

[4] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle,
R. Holladay, I. Morona, P. Q. Nair, D. Green, I. Taylor, W. Liu,
T. Funkhouser, and A. Rodriguez, “Robotic pick-and-place of novel
objects in clutter with multi-affordance grasping and cross-domain
image matching,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2018.

[5] A. Milan, T. Pham, K. Vijay, D. Morrison, A. W. Tow, L. Liu,
J. Erskine, R. Grinover, A. Gurman, T. Hunn, N. Kelly-Boxall,
D. Lee, M. McTaggart, G. Rallos, A. Razjigaev, T. Rowntree, T. Shen,
R. Smith, S. Wade-McCue, Z. Zhuang, C. F. Lehnert, G. Lin, I. D.
Reid, P. I. Corke, and J. Leitner, “Semantic segmentation from limited
training data,” CoRR, vol. abs/1709.07665, 2017.

[6] C. Kding, E. Rodner, A. Freytag, and J. Denzler, “Fine-tuning deep
neural networks in continuous learning scenarios,” in ACCV Workshop
on Interpretation and Visualization of Deep Neural Nets (ACCV-WS),
2016.

[7] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric
learning via lifted structured feature embedding,” in Computer Vision
and Pattern Recognition (CVPR), 2016.

[8] L. C. Jain, M. Seera, C. P. Lim, and P. Balasubramaniam, “A review
of online learning in supervised neural networks,” Neural Computing
and Applications, vol. 25, pp. 491–509, Sep 2014.

[9] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-driven
incremental learning in deep convolutional neural network for large-
scale image classification,” in ACM Multimedia, November 2014.

[10] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy, “Deep metric
learning via facility location,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2206–2214, July 2017.

[11] A. Bellet, A. Habrard, and M. Sebban, “A survey on metric learning
for feature vectors and structured data,” CoRR, vol. abs/1306.6709,
2013.

[12] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2, pp. 1735–1742, June 2006.

[13] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning, with application to clustering with side-information,” in Pro-
ceedings of the 15th International Conference on Neural Information
Processing Systems, NIPS’02, (Cambridge, MA, USA), pp. 521–528,
MIT Press, 2002.

[14] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition,” 2015.

[15] B. G. V. Kumar, G. Carneiro, and I. D. Reid, “Learning local image
descriptors with deep siamese and triplet convolutional networks by
minimising global loss functions,” CoRR, vol. abs/1512.09272, 2015.

[16] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pp. 815–823, 2015.

[17] X. Zhe, S. Chen, and H. Yan, “Directional statistics-based deep
metric learning for image classification and retrieval,” CoRR,
vol. abs/1802.09662, 2018.

[18] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krähenbühl, “Sampling
matters in deep embedding learning,” 2017 IEEE International Con-
ference on Computer Vision (ICCV), pp. 2859–2867, 2017.

[19] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond triplet
loss: a deep quadruplet network for person re-identification,” CoRR,
vol. abs/1704.01719, 2017.

[20] C. Huang, Y. Li, C. C. Loy, and X. Tang, “Learning deep represen-
tation for imbalanced classification,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5375–5384,
June 2016.

[21] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in Advances in Neural Information Processing Systems 29
(D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
eds.), pp. 1857–1865, Curran Associates, Inc., 2016.

[22] B. G. V. Kumar, B. Harwood, G. Carneiro, I. D. Reid, and
T. Drummond, “Smart mining for deep metric learning,” CoRR,
vol. abs/1704.01285, 2017.

[23] C. Huang, C. C. Loy, and X. Tang, “Local similarity-aware deep
feature embedding,” CoRR, vol. abs/1610.08904, 2016.

[24] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss
for person re-identification,” CoRR, vol. abs/1703.07737, 2017.

[25] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning
with angular loss,” in IEEE International Conference on Computer
Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 2612–
2620, 2017.

[26] B. Gecer, V. Balntas, and T. Kim, “Learning deep convolutional
embeddings for face representation using joint sample- and set-based
supervision,” CoRR, vol. abs/1708.00277, 2017.

[27] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature
learning approach for deep face recognition.,” in ECCV (7) (B. Leibe,
J. Matas, N. Sebe, and M. Welling, eds.), vol. 9911 of Lecture Notes
in Computer Science, pp. 499–515, Springer, 2016.

[28] X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai, “Triplet-center loss for
multi-view 3d object retrieval,” CoRR, vol. abs/1803.06189, 2018.

[29] M. Opitz, G. Waltner, H. Possegger, and H. Bischof, “Deep metric
learning with BIER: boosting independent embeddings robustly,”
CoRR, vol. abs/1801.04815, 2018.

[30] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and
X. Zabulis, “T-LESS: An RGB-D dataset for 6D pose estimation
of texture-less objects,” IEEE Winter Conference on Applications of
Computer Vision (WACV), 2017.

[31] X. Wang, F. M. Eliott, J. Ainooson, J. H. Palmer, and M. Kunda,
“An object is worth six thousand pictures: The egocentric, manual,
multi-image (emmi) dataset,” in The IEEE International Conference
on Computer Vision (ICCV) Workshops, Oct 2017.

[32] V. Lomonaco and D. Maltoni, “Core50: a new dataset and benchmark
for continuous object recognition,” in Proceedings of the 1st Annual
Conference on Robot Learning (S. Levine, V. Vanhoucke, and K. Gold-
berg, eds.), vol. 78 of Proceedings of Machine Learning Research,
pp. 17–26, PMLR, 13–15 Nov 2017.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[34] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1701–
1708, June 2014.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, pp. 770–778, IEEE Computer Society,
2016.

[36] D. P. Vassileios Balntas, Edgar Riba and K. Mikolajczyk, “Learning
local feature descriptors with triplets and shallow convolutional neural
networks,” in Proceedings of the British Machine Vision Conference
(BMVC) (E. R. H. Richard C. Wilson and W. A. P. Smith, eds.),
pp. 119.1–119.11, BMVA Press, September 2016.

[37] G. Pasquale, C. Ciliberto, F. Odone, L. Rosasco, and L. Natale,
“Teaching icub to recognize objects using deep convolutional neural
networks,” 2015.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

https://github.com/MikeLagunes/Supervised-Triplet-Network
https://github.com/MikeLagunes/Supervised-Triplet-Network
http://www.deeplearningbook.org

	Introduction
	Related work
	Proposed Method
	Softmax loss
	Triplet Loss
	Recognizing novel objects

	Experiments
	Balancing Softmax and Metric Learning Losses:
	Trade off between Deep Metric Learning and Label Prediction approaches
	Recognizing Novel Classes:
	Embeddings association:

	Discussion
	References

