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Abstract

We present a method for the learning and detection of maltigid texture-less 3D
objects intended to operate at frame rate speeds for viged. i he method is geared
for fast and scalable learning and detection by combiniactaible extraction of edgelet
constellations with library lookup based on rotation- acale-invariant descriptors. The
approach learns object views in real-time, and is generat®nabling more objects to
be learnt without the need for re-training. During testimgandom sample of edgelet
constellations is tested for the presence of known obj&ts perform testing of single
and multi-object detection on a 30 objects dataset showatgctions of any of them
within milliseconds from the object’s visibility. The re$sishow the scalability of the
approach and its framerate performance.

1 Introduction

This paper concerns the detection of multiple rigid objétis/e video streams. Our target
application is the real-time analysis of workspaces, inchhiools and components are first
learnt and then are located under clutter and expected (fig€el). In most tasks, objects
have little texture and adopt a wide range of 3D poses, theisrtbthod we are targetting
should be shape-based, occlusion-tolerant, scalableaahed$peed and performance should
not degrade significantly as the number of objects beingkedrfor increases.
Shape-based representations are based on edges or edgatsef@ugelets). Edgelets
are dense and quick to compute, and a constellation of eédgeharacterises aspects of
shape, either locally or globally, providing discrimir@tieven in the presence of occlusion.
A key and distinguishing element of the method is the uggatti tracing for both training
and testing. Each path defines the relative direction betilee constellation’s constituent
edgelets. This introduction of paths is critical; as it lisnihe number of possible constel-
lations and allows tractable generation of a library of dipsars. Note that our focus is on
detection without tracking, i.e. we consider each framepahdently. The method is tested
on a dataset of 30 texture-less objects. It specificallyesadcall for speed, testing a sample
of edgelet constellations in each processed frame. At 7égsll of 50% (precision = 74%)
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library

Figure 1: Spatial constellations of edgelets are tracedroat the edge maps of reference
views of multiple objects using defined paths, generatintprady indexed by scale and
rotation invariant descriptors. In test frames, samplectstgconstellations are traced out
using the same paths to enable matching with views in tharljbr

was achieved when 30 objects were learnt (1433 views). Térfopnance is suitable for
intialising trackers for multiple objects in real-time. @method is generative and does not
optimise the performance on a training set. It is not expkttt®utperform single-class clas-
sifiers, but for comparison, we also provide results on thelE@ataset showing acceptable
performance.

2 Related Work

We first review methods aiming for shape-based detection sifigle object or clas§l).
Then, we review methods that target scalability (i.e. raeldiss)(11), and finally discuss
works focusing on fast detection in video ingLitl ).

(1) There have been many previous approaches to shape matdtie@pproaches often
extend beyond rigid objects to deformable categories. &\Mieiktured-patches have proven
successful in voting for object centres for plan@y 11] as well as 3D objects2D, 23],
edge segments are not discriminative enough for similangotnstead, neighbouring edge
responses at various rad?| [ contour fragmentsl[9, 24] and non-adjacent edgelet constella-
tions [5, 15] have been used. Selecting discriminative contour fradstbat best distinguish
a category of deformable objects was proposedlB) 4] within a boosting framework.
In [17], probabilistic weights of discriminative parts are leama max-margin framework.
In [3], discriminative selection of lines and ellipses resuttsiclass-specific shape struc-
ture that can be used for detection in real-world images.5]ndonsistent constellations
of edgelets over examples of a deformable category aredddrom weakly-labelled im-
ages. The most consistent pair of edgelets in the learnt hiwdelected as the ‘aligning
pair’ and is exhaustively compared to all pairs of edgeletthe test image. Instead of a
pair of edgelets, a fully connected clique was usedLi.[ The clique is described using a
highly-redundant descriptor and exhaustive search dettbbject in the image by max-
imising the matching score between the learnt cliqgue artdetigelets. Grouping edgelets
into mutually-independent parts before voting for the otijecentre, was proposed ia7]
using iterative optimization. These discriminative vgti@pproaches are state-of-the-art in
single-view class detection. When multiple objects are@peionsidered, detectors are ap-
plied in sequence resulting in linear scalability. Desiteir recently-increasing focus on
faster detection, discriminative learning requires offlprocessing, and the shape represen-
tations are not rotation- or scale-invariant. During déteg the approaches are tested on
multiple scales. Rotation-variance remains acceptabil@dtural images where vehicles,
animals and humans are standing upright.

(1)  When targetting sub-linear scalability (often referrecagomulti-class detection), hi-
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erarchies of views or objects were proposed as the numbebdélsincreases. For views
of a single 3D object,J6] organises the views into a hierarchy of shapes. The tegjens
searched for views in the top level, and branches are explehen a match is found. Using
a fast similarity measure, an object is detected within 800ms. Building a hierarchy of
detectors was also achieved ik0]. Arrangements of edge fragments are learnt in an unst
pervised statistical manner from training images, andatex combined into a hierarchy of
detectors. While the approach theoretically allows findiagsformation-invariant parts, the
rotation invariance was removed for tractable inferenclee multi-class hierarchy inipj
speeds up detection over methods that test models sedlyentl20 single-view classes
were detected within multiple seconds bsec).

Scalability and transformation invariance were addregsearlier works in the 80s and
90s by indexing and geometric hashing, similar in form toltheary look up that we use
in our method. Examples include early work on poirité][and surfaces]?], and later on
edges [, 21, 22] where edges are grouped and represented by a transformiat@riant
descriptor. The descriptors are indexed for all trainirgns, then edges are grouped in the
same manner in test images and the descriptor is compute@ébr pair, and compared to
the library. For example, in2P], the contour segment between two consecutive bi-tange
edge points is mapped to a canonical frame, which is a pregetvariant descriptor. In test
images, bi-tangent points are detected and the descriptonmiputed for each pair, and com-
pared to the library. While this approach is efficient, it idyoapplicable to concave curved
boundaries. In1], straight edges are grouped if co-terminating or paradietl the descriptor
encodes the relative angles and the relative lengths ofrthepgd edges. The descriptors for
all groups are indexed using a best-bin-first k-d tree. Intés¢ image, lines are similarly
grouped, and the descriptors forsuch groups are calculated. The nearest k examples fro
training images are found and a probabilistic approachdgscon the best detections out
of k.m possible explanations. The method is not designed for freateedetection, and is
sensitive to the detection of lines of the same lengths initrg and test images.

(111)  Recently, fast performance for detecting 3D objects frondawinput has been tack-
led, mainly focusing on efficient algorithms. 1hg] chamfer distance matching is improved
and made faster by using 3D distance transforms and diredtiotegral images. Detection
time of 710ms given 300 reference views is reported, alth@agrch time increases linearly
with more views and more objects. [hJ], patches represented by histograms of dominar
orientations followed by efficient bitwise matching enatiégection within 80ms of one ob-
ject using 1600 reference views. Similar to our purpo%g), §ims at real-time learning and
detection of objects in workspaces. However, the reprasientis not rotation- or scale-
invariant (hence the need for large numbers of referencgsyiand complexity increases
with multiple objects, with detection time increasing t3&3s for 3 objects.

We can conclude that most shape-based detectors eithérereffline training or scale
linearly as more objects are being searched for, or comniootly. To address speed and
scalability in learning and testing, this paper proposesite of pre-defined paths that spec-
ify the relative direction between edgelets, and impolyamhake the search tractable for
real-time operation. The traced edgelets are represegtedsimple to compute transfor-
mation invariant descriptor, that is used as an index tolaftyistored descriptors (in a way
that revisits geometric hashing). The usage of paths wasqusy introduced in our ear-
lier work [4] but is extended here by providing a method for path selectod using it for
real-time learning. The method is described in detail inftlewing section.

Ipersonal correspondence with the authors
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3 TheMethod

For a 3D object, we refer to the edge map as seen from one poititeoviewing sphere
as a view of that object. Thus,\daew w is a set of edgeletée} where anedgelet is a
short straight segment, represented by its centre poinbardtation. A constellation of
edgelets is am-tuple of edgeletx = (ey, ..,&,). These edgelets could be nearby or distant,
thus constellations characterise both local parts andigkitape. Potentially, an exponential
number of constellations is present in each view. To managenatching complexity, we
use paths that trace out constellations from the edge maat\@ is a sequence of angles
© = (6y,..,6,-2). From any starting edgelet, the base anglé, specifies the direction of
a tracing vectov, initially with unspecified length, relative to the orietitan of the starting
edgelet. If this tracing vector intersects with anotheredelie; in the edge map, then the
edgelet is added to the constellation. The next tracingovegtthen has the directiofl;
relative tovy, i.e.cos(6;) = (v1-Vv2)/(Jvi||v2|). Note that the direction of; is not dependent
on the orientation oé,, but only on the incoming vectaq. This process continues until the
constellation has edgelets. Note that starting from any edgelet, zero or manstellations
can be found using the same path (within a tolerangethe angles). Using a pre-defined
path limits the number of considered constellations whi@ntaining sufficient variability
in the configurations of these constellations (.

For a traced constellatiog), the descriptorf(¢i) = (¢, ..., %h-1,01, ..., 0n_2) Specifies
the relative orientations and distances between the catigeedgelets in the constellation’s
tuple, wherep = g6 1 is the relative orientation of consecutive edgelets { n— 1), and
& = |vit1]/|vi| is the relative distances between the edgeletsi(X n—2). The descriptoris
of size h— 3, and is translation-, rotation- and scale-invariant. Bging a comprehensive
library of descriptors for all constellations guided by qa¢h® from all starting edgelets, it
is sufficient to extract one constellation using the samk fratn the object in the testimage
to produce a candidate detection that is verified using thisofehe view edgelets (Fig).

In atestimage, constellations are traced out using the pathe When a constellatian
is found, the descriptor is calculatédc; ) and is compared to the library. If a match is found,
an affine transformatioH is estimated from the corresponding edgelets in the mattthed
ples. The homography transforms all the view edgelets to the testimage, andiverelos-
est edgelet]8] is used to refine the homography, where the distance betiveeadgelets
d(e,ej) assesses the similarity in orientatianij and spatial positiongos) [24]

d(e,ej) = |&.pos— ej.pos|2 + A|g.ori — ej.ori| 1)

In Eq. 1, A weights the orientation term. H(g) is the transformation of edgeletunder
the affine-transformatioH, andt(e,H) is the closest edgelet in the test image to the trans-
formed edgeleg using the distance in Ed, then the cost of the detectidhis the scaled
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Figure 2: For a given path that is defined by a sequence of ei@lefour constellations are
shown traced out by the same path from different startinglkedsg (in red). Tracing vectors
are shown (dotted) along with the constellation’s edgeleflsand (e) have the same relative
distances but differ in the relative orientations of theeddts.
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Figure 3: For a given path (a), edgelet constellations aeett out from training views.
Tracing vectors from the same starting edgelet (red and lalne from a different starting
edgelet (green) are shown (b). During training, all cotestieins from all starting edgelets are
found, and the descriptor for each constellatigq ) is inserted into a quantised hierarchical
hash table (d). During testing, constellations are tracgdising the same path. The relative
orientation and distance are calculated and the correspghdsh bin is located (e). When
a constellation is completed (h), possible matches aréddcand a homography maps the
view's edgelets to the test image (i). Iterative closesedetghen refines the match (j).

average of the distance measures between correspondielgtsg

_ 2imin(d(H(e).7(e,H)).B) [{1(8,H):d(H(&),7(e,H)) < B}|
2] {e:d(H(a) 1(a,H)) < B}

E(w,H) )

In Eqg. 2, the distance measures are averaged along with a penalsure@afor missing
correspondences wheliH (), 7(e,H)) > B, and the scale is estimated by the number o
matched edgelets in the test image to the number they comdsp from view edgelets.
The termRis the ratio of the lengths of view edgelets to test edgel&sndifferent edgelet
lengths are used. An object is detected at the test eddeleisH );d(H(a), 1(e,H)) < B}
if E(w,H) < a, wherea is the acceptance threshold.

To speed detection, four techniques were used. First, tagvesorientation, direction
and position for all pair of edgelets in the test image aregaleulated. Accordingly, all
pairs of edgelets with relative positions that satisfy thedanglé, (within the tolerance)
are found from the pre-calculated data. From these, parshaysen at random, and constel-
lations are completed by performing further lookups in thee galculated data. Thus, vectors
are not actually traced in the image, but constellationgaurad from the pair calculations.
Second, only one constellation is completed for each censitpair of edgelets. Given that
the library contains a comprehensive list of all possibé&wtonstellations traced out by path
O, the risk of skipping a pair before pursuing all the possisyponential number of con-
stellations starting with that pair is acceptable, and psmufficient during the experiments.
Third, a quantised hierarchical hash table is used so thwiges is incrementally calculated
and compared to the corresponding level in the hash takde i When the accumulated
descriptor cannot match any descriptor in the library, trereh is prematurely stopped, and
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another pair is pursued. Fourth, when a test constellatiatcmes a view constellation with
an errorE(w,H) < a (Eq.2), the corresponding test edgelets are greedily removeddiy
further searches to speed the detection of multiple objetsent in the same image.

Several paths are used and a separate library is built foraazsen path. The choice of
pathsis discussed in Setl When all pairs are tested, another p&this used. Fok paths,
the worst case i©(k- p?) wherep is the number of edgelets in the test image. The search is
stopped when the maximum search time is reached. Note tkgtassible to parallelise the
path searches, but this is not implemented in the resultepted next.

4 EXxperiments
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Figure 4: Thirty texture-less objects in the dataset (nahwd,views) along with the confu-
sion matrix from 10 runs. Each cell indicates the percentdgines an object of type row
was classified as the type column. Ten objects achieved re88P%6 (*), two of them with
precision < 90% (**). Three objects are difficult to detectiwiecall < 30% (#).

We have tested the method on a dataset of 30 objects4Jiglraining uses a video
around the viewing hemisphere on a clear background usirand-mounted camera, and
views are automatically sampled from the video (total 14i28/8). There is no need to clus-
ter similar views, and the descriptors of all constellasioner the chosen paths are indexed
in real-time. To extract edgelets, we evaluate two linectets. The first is the line-segment
detector (LSD) from25]. The second uses the canny edge map, then traces the edgge pix
to form straight line segments. During training, edgeldtd @ pixels length are sampled
from the lines € = 0.02). During testing, edgelet length is increased to ¥BlIpi(thus, in
Eqg.2, R=2/3). Based on preliminary results, the length of the coretielh tuplen was
set to 5,8 to 30 andA to 2. Shorter tuples have a higher chance of hallucinatingotiens
while longer tuples decrease the recall. Each level in thsh hable was quantised into 64
bins - non-leaf nodes are bhinary, signifying the presengraithes.

4.1 Selecting Paths

We choose paths based on their ability to find constellatinres subset of views, prior
to training. Instead of exhaustively searching the spageossible paths, we sample 100
random paths, and rank them by the number of edgelet caatsta they can find in sam-
pled training views. Recall on a ground-truthed sequencpgisteadily (58.8% for rank 1,
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33.0% for rank 15, 16.3% for rank 30 and 12.3% for rank 90).uFéd shows the top-six
paths from three runs on different training objects. Irgéngly, the best path is similar, and
several paths are similar between the independent runsrefighows the average number
of processed paths as the specified maximum search timeadesreAt 1fps, 5 paths were
tested on average. At this rate, we test the contributionebtdered paths in finding objects
using different permutations of the top 6 ranked paths @apl The table shows that 90%
of the detections on average are found using 3 paths. Onerrgarapled views from the
first 10 objects in the dataset results in the top-6 paths imselll our experiments on both
the tools and ETHZ dataset. These proved suitable for vatiogeen object shapes.

1 S N /\ N 324;
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o \/ //\ 7
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Figure 5: The top 6 paths by the number ofjq, e 6: As the time limit decreases from
extracted edgelet constellations, from three atrs”" 15 50ms. the avg. number of paths

tempts. Notice that the first path is similar inggiaq (out of 6) is shown.
the three attempts.

Average Number of Paths Tested
PN w s o o

17

Acc. % of detections aftar paths

Order of paths 1 2 3 4 5 6

(1,3,4,5,6,2) 75.61 90.42 91.04 94.13 98.45 100
(2,3,4,5,6,1) 51.84 82.61 89.3 94.65 96.99 100
(3,1,2,4,5,6) 61.07 86.26 87.28 90.33 95.67 100
(4,3,5,1,6,2) 78.12 90.89 95.45 98.19 99.41 100
(5,1,2,4,6,3) 80.79 88.90 89.50 91.6 94.9 100
(6,5,4,3,2,1) 67.91 84.70 88.06 95.90 99.24 100
Avg. 69.22 87.30 90.10 94.13 97.44 100

Table 1: For 6 permutations of the top 6 paths, the accunuifzgecentage of detections is
shown. The table shows that on average 69% of the detectierfsand by the first path,
and more than 90% of the detections are found using 3 paths.

4.2 Resultson the Tools Dataset

A video sequence of 1300 frames containing all the 30 objweatstested. Figure@ plots
recall against precision for three objects as well as albthjects (the PASCAL 50% overlap
criterion is used§]). In both cases, the search is for all the 30 objects. Thedighows
that recall of 50% was achieved at 7fps (precision = 74%)gusBD. For a system that runs

1 3 5 17 1 3 5 5 1

5 7 9 11 13 1 7 13
Number of Processed Frames Per Second Number of Processed Frames Per Second

Figure 7: As the maximum time limit decreases (1-17fps)alleand precision are plotted

for three objects (left) and for all the 30 objects (righthelperformance varies for objects
depending on their shape’s distinctiveness. Results muigasifor both LSD and Canny edge
detectors, showing the method’s resilience to the choiezlgé detector.

15 17
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Figure 8: True-positive (col 1-4) and false-positive (cpt&ses from the 30-objects dataset
using canny. False positive cases (wood, tape and box) deuldsolved using appearance
or depth information.

Figure 9: Detections on a sample of frames processed at gfpg USD. The last column
shows test edgelets and the corresponding view edgeletethar blue dots. Red dots
indicate missing edgelets.

on a stream of live images, it is affordable if an object issadsin one frame as long as it
can be detected in a few subsequent frames. True-positiVéatse-positive examples are
shown in Fig.8. We further assess the ability of the descriptor to distisigbetween the 30
different objects. We run the detector for 10 times at 7fgs$n@ LSD), and accumulate the
detections. We report the results as a confusion matrix @igrhree of our 30 objects are
very difficult to distinguish (Fig4 #). This is because the descriptors of most constellations
derived from these objects match descriptors extracted &ier objects.

We also test the method on a 300-frame sequence @rigontaining 6 objects with
surrounding clutter. Fig9 shows equally-spaced frames from the video sequence. Again
recall of 51% was achieved on this video at 7fps (precisio6%Busing LSD. The figure
also shows correctly labelled occluded/missing view eelgel

To test the method’s scalability, we expect that as the nurmbebjects and views in-
creases, the detection time scales graciously. For onietage containing the object, Figj0
plots the detection time as more objects are learnt. Theti@tgime is the elapsed time un-
til the object is correctly detected without specifyingradilimit for the search. The increase
in detection time results from comparing to a larger numibdescriptors in the hashtable, as
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Figure 10: As the number of objects increases from 1 to 30liltihary size increases by
more than 150x, while the avg. detection time increases®y(@lier), 4.8x (claw) and 5.5x

(charger). For the object tape (right), the avg. deteciime increases by 10x, particularly
when objects with a circular shape are learnt (headphong, apple and scissors).

well as assessing ambiguous matches. From the figure, addimgmbiguous objects does
not affect the average detection time much. Average detetitne of 200ms was reported
when 30 objects are learnt, compared to 60ms for a singlebljer the ambiguous object
‘tape’ (Fig. 10right), the average detection time increased by 10 foldsmBteobjects are
being searched for. This is because the circular shape ¢dtiesis present within the shape
of a few other objects in the dataset. Notice that the vetifinasstage using all the view's
edgelets will ensure that objects like the scissor canndebected when the tape is present,
but the detection time is nevertheless affected by the g#ecs’ ambiguity.

4.3 Comparison with Off-line Learningon ETHZ dataset

With our method geared towards both learning and simultas@aulti-object detection in
real-time, we do not expect to outperform methods that haeduxury of off-line process-

Apple Swan | Bottle Giraffe Mug

Bl 832 | 754 | 832 586 | 83.6
27(V) 840 | 767 | 931 795 | 67.0
27+ | 958 | 941 | 963 841 | 964

Flgure 1 Object detection performance usmg and-drawmionrs for two categories from
the ETHZ dataset compared t8, P] (left) as well as using training images for all categories
at 0.4 FPPI from 5 runs (right). For comparison, we filter vantical detections as irb].
Our real-time non-exhaustive generative method is contp@reiscriminative methods in-
cluding the state-of-the-art on the datag] that uses voting (v) followed by verification (f).
True and false positive examples are shown.
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ing and class-tuned discriminative classifiers. Howeverave interested in evaluating how
the proposed approach performs when compared to such systtare we present compa-
rable results using the ETHZ datas@l [We use the Berkeley edge maps provided with the
dataset 18], and the 50% PASCAL overlap criterioB][ The system is run at 1 second per
image - though many images were searched within less tinge 1Eishows sample results
and detection performance on hand-drawn contours andrigaimages. All training ex-
amples are considered as different views, and edgeletaltaigins are extracted using one
path (Fig.5 top-left). The results show competitive performance oa #ti@andard dataset.

5 Conclusion

This paper proposes a method for real-time learning andtieteof multiple 3D texture-
less objects. The method uses paths as a tractable way txtegtigelet constellations.
Constellations are represented by a transformation-{embdescriptor, which is used as an
index to candidate detections. The method is both fast aaldisle, and is tested at frame
rates varying from 1 to 17 fps detecting multiple objectsafi80 three-dimensional texture-
less objects. As the number of objects in the library inaedsom 1 to 30, the increase
of detection time is dependent on the shape’s ambiguityerattan the number of objects.
Videos and dataset are available online at http://wwweissdz. uk/Publications.
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