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Abstract. We present an online fully unsupervised approach for auto-
matically extracting video guides of how objects are used from wearable
gaze trackers worn by multiple users. Given egocentric video and eye gaze
from multiple users performing tasks, the system discovers task-relevant
objects and automatically extracts guidance videos on how these objects
have been used. In the assistive mode, the paper proposes a method for
selecting a suitable video guide to be displayed to a novice user indi-
cating how to use an object, purely triggered by the user’s gaze. The
approach is tested on a variety of daily tasks ranging from opening a
door, to preparing coffee and operating a gym machine.
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1 Introduction

With the advent of wearable devices, systems able to provide guidance to users
remain a possibility and a challenge. In particular in industrial settings (e.g. as-
sembly, repair), operations using augmented reality or video-based manuals have
been promised for a while. One of the key limitations to realize such systems is
the need for authoring the content by e.g. manually segmenting and annotat-
ing videos or creating three-dimensional models that represent meaningful guid-
ance [16],[1]. Authoring is time consuming and evidently limiting. Approaches
that can provide guidance without the need for any manual intervention would
enable a wider adoption of assistive wearable systems.

In this paper we present a fully automated, online and real-time approach
for providing video-based guidance on object usage from egocentric video and
eye gaze. The system has two modes, a learning mode where video snippets are
automatically extracted from videos of multiple users performing tasks around a
shared environment, and an assistive mode where a ‘suitable’ video snippet from
the automatically collected video guides is selected, triggered by gaze. In strong
contrast to most previous work on assistive egocentric guidance, we require no
pre-training of the objects involved in tasks, nor knowledge of the tasks’ scripts
or the knowledge of how many objects will be used or interacted with. The
approach is able to harvest video snippets for objects of interest as a precursor
for cognitive assistance. The system selects a short assistive snippet or video
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guide to be shown when a gazed-at object is recognised, to illustrate how the
object was used before. This paper presents a prototype for the system and
concentrates on evaluating the extraction of objects and their use. We illustrate
the annotation of test videos with the automatically extracted video guides!,
and leave the evaluation of the effectiveness of the assistive mode with real users
for future work.

The setup uses a single wearable gaze-tracker eyepiece which features a cam-
era that looks out towards the scene and a pupil tracker that indicates where
the eye is looking.

2 Related Work

Related systems to the problem we are aiming to address expect the objects
to have visual markers (e.g. [18]), use model-based tracking(e.g. [16]) or be
specified in advance of task performance (e.g. [1]). This review focuses on the
ability to find objects of interest, i.e. task-relevant objects (TRO), from egocen-
tric video during task performance. Common approaches include i) segmenting
the area surrounding the user’s hand [7],[6],[12], ii) extracting foreground re-
gions through frame stabilisation or scene planarity assumptions [17],[21] or iii)
detecting ‘object-like’ regions [15].

One uniquely rich source of information in egocentric sensing is eye gaze. Eye
gaze has been studied for hundreds of years and more intensively since the 19th
century [23]. There are two principal eye behaviours: fast motion transitions (aka
saccades) and eye fixations. Importantly, studies of eye fixations during everyday
tasks show substantial similarities in the locations and number of fixations by
different operators, that gaze rarely visits irrelevant objects and that fixations
precede actions [11],[8].

However, eye gaze has been rarely considered as part of wearable systems,
perhaps due to the scarcity of mobile gaze tracking hardware. Exceptions include
[5] which exemplifies how gaze can assist in predicting the current action, and
how the predicted action can be used to estimate the forthcoming gaze position.
In [20], a wearable gaze-controlled camera provides a cropped image dictated by
eye gaze locations to enhance object tracking and in [4], interest points are ex-
tracted around the gaze point and matched to pre-learnt highly textured objects.
None of these approaches discover objects using gaze. In [14], object segmenta-
tion using gaze is attempted from annotated short clips containing action, though
the work focuses on gaze estimation.

Our recent work [3] has compared the influence of gaze, position, appearance
and motion wusing offline processing on the extraction of objects in egocentric
video. Results prove that 80% of objects were correctly extracted by localis-
ing gaze within a 3D map. In this work, we use the same dataset but propose
an online incremental algorithm that learns objects and extracts video help
guides incrementally from multiple operators. An online approach would scale
with more users without the need for re-training, and data can be processed on

! http://www.cs.bris.ac.uk/damen/You-Do-I-Learn
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the fly avoiding the need to store lengthy hours of egocentric video collected
from multiple users. To enable real-time processing, we learn objects using the
shape-based real-time object learning and detection method [2], which is capa-
ble of accommodating multiple objects in a scalable manner using constellations
of edgelets. The algorithm is also capable of detecting ‘moveable’ objects and
distinguishing them from ‘static’ objects that remain fixed in the 3D map.

3 Proposed Method

Our method is based on four principles:

— Spatio-temporally consistent gaze fixations indicate an observation of a task-
relevant object (TRO).

— Each observation represents a candidate video snippet for assistive guidance.

— Spatially consistent observations correspond to a fixed TRO (i.e. an object
with a fixed location in the scene).

— Appearance-consistent observations, observed in different locations, corre-
spond to a moveable TRO.

The input to the system is real-time egocentric video with 2D gaze fixations.
In the learning mode (Sec 3.1), the system aims to learn objects of interest as well
as extract video snippets on how these objects are used. In the assistive mode
(Sec 3.2), the system aims to recognise gazed-at objects and select a suitable
video snippet for guidance from the automatically extracted snippets in the
learning mode. The approach is completely unsupervised, and details of both
modes are discussed next.

3.1 Learning Mode

First, we follow the velocity-based approach from [19] to distinguish saccades
from fixations, and position the 2D fixation relative to the scene using sparse
Simultaneous Localisation and Mapping (SLAM) [9]. Given the 6D pose of the
scene camera, a 3D gaze ray links the direction of the gaze to a point in the
scene. A dense depth map is estimated, using a triangular tessellation on the
tracked interest points that are visible on the scene camera (similar to [22]). To
distinguish between the 2D fixation at time ¢ and its corresponding 3D position
within the map, we refer to these as f? and f? respectively.

Next, objects are discovered using online clustering, as explained below and
in Algo. 1. We define a gaze cluster (GC) as a collection of ‘at least’ £ spatially-
close consecutive gaze fixations, and use this to learn objects. Two consecutive
fixations, f7 and f? ; belong to the same GC if ||f3 — f2 || < ¢, where € is
the distance threshold selected to accept clustering consecutive fixations and
[|.]| is the Euclidean distance. Notice that the temporal difference between ¢ and
t — 1 might not correspond to one frame, as some frames have missing gaze
information, or the gaze might have been discarded as a saccade. If and only
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input : fixations {(fZ, )}, images {I;};t = 1..T
output: TROs {(Ak, Uy, mi,vx);1 < k < K}

Ay learnt view-based appearance model for TRO i
U}, video snippets for TRO 4

vy, € {fixed, moveable} type of TRO

my segmented 3D model for TRO &

K = previousK =0

stableGC = 0

for t =1..T do

find closest gaze cluster k: minarg, ||f2 — ux|| s,
Extract window w; centred around ff from I;

// Object Discovery
if ||ft3 — pkllz, <1 then
| Update ux(Eq 1), Zx(Eq 2)

else
if |7 — f1]| < e then
stableGC' = stableGC + 1
if stableGC > ¢ then
K=K+1
Add a new gaze cluster k = K
Learn the first view of a new object
v, = ‘fixed’

else
L stableGC = 0

// Learn Appearance
Detect an object within the window w;
if recognised as TRO j then

if j # k then

if confirmed from several detections then

L L VL, = ‘moveable’
else
if Object was not detected in last 6 frames then
L Learn a new view for object k

// Video Snippets and Model

if k # previousK then
add wideo snippet uf to Uy (Eq. 3)
build 3D model my

// Keep track of current GC
previousK =k

Algorithm 1: Proposed algorithm for learning mode
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Fig. 1. Two TROs were discovered (a,b). Later, the tape was moved (c). A new fixation
is spatially close to TRO ‘0’ (d). Initially, further views were collected for TRO ‘0’ (d,e).
A few frames later, the object is consistently recognised as TRO ‘5’ by appearance
matching. Both TRO ‘0’ and ‘5’ are marked as ‘moveable’ (f).

if ¢ consecutive fixations are within the same GC, an observation of a TRO
k is discovered (Algo. 1 L. 9-15). The mean and covariance of GC are updated
incrementally as further fixations are located within the threshold e. Equations 1
and 2 show the incremental update for the mean and covariance of a GC.

k 3
pia X (n—=1)+ f
WfE = fiall < e— pp === - (1)

L )T = ) (2)

n

n—2
—’Efzmxf—l‘F

where pf is the mean, ¥F is the covariance matrix and n is the number of
clustered fixations at time ¢.

Attention is believed to have moved to another location when || f2—f2 ;|| > e.
At a future point in time ¢+ p, further fixations can belong to the same TRO k if
it is within one standard deviation from the mean of the TRO k according to the
Mahalanobis distance (Algo. 1 L. 6-7). This clustering enables both small-sized
and large TROs to be discovered, as it does not limit or pre-define the size of the
GC. However, it assumes that the object is fixed, i.e. remains within the same
3D location.

To accommodate for moveable objects, appearance matching is considered.
For every TRO k, views around the object are learnt using the real-time method
from [2]. Only novel views are added to the appearance model - a view is added
if the object fails to be recognised in the past § frames (Algo. 1 L. 24-25). The
gazed-at object is compared to the previously learnt K objects {Ax; k = 1..K}.
If the appearance matches a learnt TRO, at a different location, the object is
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believed to have moved, and is thus identified as a ‘moveable’ object (Algo. 1 L.
19-22). To avoid incorrect detections, multiple consecutive matching appearances
are required before an object is identified as ‘moveable’. Figure 1 shows an
example of identifying a ‘moveable’ object.

Notice that identifying an object as ‘moveable’ could result from multiple
instances of the same object. A limitation of the approach arises when a new
object replaces a learnt TRO. The object is then incorrectly learnt as novel
views of the previously learnt TRO. This does not affect the assistive nature of
the method, as we use the current object’s appearance to select a suitable help
snippet as will be explained next.

As we position gaze in 3D space, we can exploit this information to generate
visualisations of the TROs as a byproduct of the process (Algo. 1 L. 28). This
step adapts [13] so it does not require the detection of keyframes form the user’s
motion and does not assume a single user is providing input. Despite not being
perfect models, due to the fact that they are created during an action, the result-
ing models are useful visualisations of what objects the system has discovered.
Ultimately, having a 3D model facilitates applications such as augmented reality
guidance which we leave for future work.

Given consecutive fixations (f7, fZ 1, ..., ff+p);p > ¢ belonging to the same
TRO, a video snippet u¥ for TRO k is defined as

up = {¥(1j, A(j),w) (3)

where ¥ crops a window of size w from Image I; around the interpolated fixation
A(j) as gaze information is missing in some frames (Algo. 1 L. 27). The collection
of all video snippets U} shows different ways in which the object k was used or
interacted with.

As multiple operators with different heights and interaction behaviours use
the same object, the method is capable of expanding the learnt views, the 3D
model my, and gather further interaction video snippets Uj. Figure 2 shows the
advantages of learning from multiple users.

Fig. 2. For the same discovered object (sink): multiple users enable learning varying
views in the appearance model Ay (left); the 3D model my, (middle) is refined (mj)
shows the model for one user, two users (m}) as well as five users (m}); different video
snippets Uy show multiple interactions with the same object (right).
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Fig. 3. During discovery (left), edges within a window around the gaze are captured
as object views, and represented using affine-invariant descriptors. These are used to
detect objects around the gaze point in real-time (right).

3.2 Assistive Mode:

In the assistive mode, video snippets {Ui;k = 1..K} can be used to provide
automatic assistance for novice operators. First, the system needs to identify
which object the person intends to use next, then the system would select a video
snippet, from the potentially many snippets collected from multiple operators
using the object one or more times, to be displayed to the novice operator.

We recognise objects based on the learnt views in an image patch around the
gaze point using the scalable real-time texture-minimal object detector from [2].
By using the combination of fixed paths and a hierarchical hash table, the
method is scalable, and can reliably detect objects at frame rate. The descrip-
tor is affine-invariant, and the method is tolerant to a level of occlusion but
is also view-dependant. Figure 3 shows the method learning (left column) and
subsequently recognising (right column) objects from our experiments. Notice
that the assistive mode does not require 3D tracking, and objects are recognised
around the 2D gaze point.

Upon recognition, a help snippet is displayed to show how this object was
previously used. From the possibly many wvideo snippets featuring the TRO,
collected in learning mode, we chose the help snippet h; as a video guide at time
t such that the appearance of the first frame in the snippet, is closest to the
recognised view. If the object changes state, the initial appearance is a good
indicator of which video snippet to show. An additional advantage is to avoid
showing a snippet observing the object from a different viewpoint, so the user
can easily map what they see to what they could do.

A help snippet is displayed each time a new object is detected. As some
objects can be gazed-at multiple times during the task, we employ temporal



8 Damen et al.

=

o
©

Precision
o
(2]

I
IS

# of learnt views (&=0.2]
-==.varying ¢

dat a3

dat a4

0 0.2 0.4 0.6 0.8 1
Recall

o
)

Fig. 4. Precision-Recall curve for discovering TROs as e¢ (Eq. 1) varies. For ¢=0.2
metres, discovered objects are filtered based on the number of learnt views - at 76%
recall, 100% precision was achieved.

ordering in choosing the help snippet. That is, for a given object we choose its
snippets in order, starting first from all the first encounters of that object in all
training sequences. When the same object is gazed-at again, a snippet from the
set from all the second encounters in the training sequences is displayed and so
on.

4 Experiments and Results

Setup & Dataset We use the dataset from [3] which was recorded using
the wearable gaze tracker hardware [10]. After calibration, the scene images are
synchronised with, if available, 2D gaze points. Twenty objects were ground-
truthed, of which 5 are moveable objects.

To evaluate the ability of online clustering to find TROs, a 3D bounding box
around fixations from one discovered TRO is compared to the manually labelled
3D bounding box on the map’s point cloud. The PASCAL overlap criterion
(adapted for 3D) of 20% is used for a true positive discovery, using the algorithm
detailed above (parameter choices in Tab. 1). The main parameter for clustering
is the threshold for 3D distances (). As € (Eq. 1) varies, the number of discovered
objects changes. The recall-precision results are shown in Fig. 4.

For € = 0.2, Tab. 2 shows the mean and standard deviation for the number of
discovered, merged and split objects in one and all sequences. Since the cluster-
ing is online, different runs would result in a different set of discovered objects
depending on the ordering of sequences. We run the experiments multiple times
(5 times), starting from a different sequence, and record the results. As the table

Eq. 1 Algo. 1
10 frames||d | 5 frames
20 cm  ||w|150 x 150

o

[a)

Table 1. Parameter choices for object discovery
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Fig. 5. [Best seen in colour| 22 objects were discovered within the four maps (W, D,
P and K) listed from left to right by order of discovery. Out of these, 14 ground-truth
objects are found (with 3 splits), and 5 are task-irrelevant (red rectangles). The ‘cup’
was missed at this iteration. Three objects were classified as ‘moveable’ (blue ellipses),
out of possible 4. The charger was discovered twice and the sugar jar was discovered
as three different objects.

shows, when trained using a single operator, precision of 79% is achieved along-
side 86% of recall. When training on all operators, on average, 97% recall was
achieved, with an increase in the total number of discovered objects. The num-
ber of false positives can be dropped by filtering for the number of learnt views,
as operators observe TROs for longer than other objects in the scene (Fig. 4).
The approach also separates fixed from moveable TROs. Recall that a TRO is
‘moveable’ if it is detected in different locations, using appearance matching. On
average, 77% of TROs were correctly classified. The set of discovered objects
from a single run is shown in Fig 5. Examples of learnt views for the discovered
objects can be found in Fig 6.

Assistive Mode: To assess the ability of the approach to provide video guides,
the approach is run using leave-one-out. For every operator, the learning mode
is run on the remainder sequences to discover TROs and collect video guides.
The appearance models of discovered TROs are then used to recognise objects
in the ‘left’ sequence (i.e. not used for discovery), within patches around the 2D
gaze. When an object is recognised, an insert is added indicating a suggestive
way of how the object can be used. A help snippet h; is displayed each time a
new object is recognised. We showcase video help guides using inserts on a pre-

Op| |total|gt TROs|merged|split|type
1 |p|21.6| 17.2 0.7 |1.5] -
o| 1.5 0.9 0.5 [08] -
I

o

All|p|33.2] 19.3 0.2 |3.8|15.5

2.0 0.8 04 |1.6]09

Table 2. At ¢ = 0.2 metres, from one and all operators, the avg. () and std dev.
(o) of the # of discovered TROs, the # of true TROs (ground-truth=20), the # of
merged objects (ground-truthed as two separate objects), the # of split objects. For
distinguishing moveable from fixed objects, the # of correctly classified objects.
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Fig. 6. Learnt views from training sequences of multiple users for a variety of objects:
coffee machine, tap, seat adjustor and screwdriver.

Fig. 7. In the assistive mode, when a TRO is detected, a video snippet is inserted
showing the most relevant video guide based on the initial appearance.

recorded video. Figure 7 shows frames from the help videos and a full sequence
is provided?. Recall that these inserts are extracted, selected and shown fully
automatically. These could in principle be shown on a head-mounted display,
but is not considered in this study. We believe this highlights the success and
potentials of the work in this paper.

5 Conclusions and Future Work

In this paper we develop an online real-time system based on egocentric video
with gaze. In its learning mode, the system discovers task-relevant objects and
automatically collects video snippets from multiple users on how they used the
discovered object. In the assistive mode, video guides are shown on how objects
have been used before, triggered by recognising the gazed-at object. This could

2 http://www.cs.bris.ac.uk/~damen/You-Do-I-Learn
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be useful to novice users exploring the same environment and objects. This
paper explains a complete online prototype, and future work aims to evaluate
the benefits of the assistive mode on the performance of novice users.
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