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Outline 
l  Drop-off and Pick-up Problem 

l  Ambiguities 
l  Formulating the Problem 

l  Linking Uncertain Events 
l  Labelling a Bayesian Network 
l  Searching the space - RJMCMC 

l  Results 
l  Datasets 

l  Carried Object Detection 
l  The method 
l  Results 
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From the news… 
l 7/6/2007: York (290 bicycle thefts during May 

2007) city sets up CCTV cameras over 
bicycle racks. 

l 22/6/2007: Oxford (1800 bicycle thefts during 
the last year) city sets up CCTV cameras 
over bicycle racks. 
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From the news… 
l 23/5/2007 – Catching Daniel Westrop… 
“have been stealing commuters' cycles, 
often two a day, for the past three years”!! 
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Associating Drop-offs with Pick-ups 

What we see… 
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Associating Drop-offs with Pick-ups 

What the computer sees… 

Trajectories Blobs 
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Associating Drop-offs with Pick-ups 

l  The required explanation.. 
1.  What each person did (drop/pick/

pass-by) 

2.  Which bicycle did he drop/pick 

3.  Try to connect a pick to a 
previous drop (if observed) 
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Associating Drop-offs with Pick-ups 

1.  Deciding on dropping people, picking 
people and passer bys. 
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Associating Drop-offs with Pick-ups 

1.  Deciding on dropping people, picking 
people and passer bys. 
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Associating Drop-offs with Pick-ups 

2.  Linking people to the blobs they interacted 
with. 

•  Spatial Proximity 
•  Change in Edge features 

Masked edges 

‘before’ reference image 

‘after’ reference image 
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Associating Drop-offs with Pick-ups 

3.  Connect drops to picks. 
•  Pixel-wise matching of difference masks 
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Associating Drop-offs with Pick-ups 

Drop 
Pick 
Pick-Drop 

Dropping 
Picking 
Pass-by 
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Hierarchical Explanation 
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Linking Uncertain Events 
l Separately 

l  Find the best explanation for each observation 
l  Constrained linkage 

l Jointly 
l  Label and link simultaneously 
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Similar Work – Radar Surveillance 
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Similar Work – Radar Surveillance 

l Reid (1979) – MHT 
l Cox (1993) – Review 

l  NN 
l  MHT 
l  JPDAF 

l Poore (1994) – Bayesian MHT 
l Oh, Russell, Sastry (2004) - MCMC 
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Similar Work – Citations Mapping 

l Pasula et. al. (2003) 
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Similar Work – Visual Data 

l  Huang and Russell (1998), Pasula et. al. (1999) 
l  Zajdel and Krose (2005) 
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Linking Uncertain Events 
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Linking Uncertain Events 
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Linking Uncertain Events 

The Bicycles Problem expressed as two-layers linkage 

Trajectories Blobs 

Drop/Pick 

Drop-Pick 
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Searching the space of Explanations 

l MCMC samples the space focusing on where 
posterior is concentrated 
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Introduction to MCMC 
l MCMC – Markov Chain Monte Carlo 
l When? 

l  You can’t sample from the distribution itself 
l  Can evaluate it at any point 
l  Ex: Metropolis Algorithm 
 1 

1 

2 

2 

3 

3 

4 

5 

4 5 … 1 4 



24/47 

Introduction to MCMC 
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Suggested Moves 
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Suggested Moves – Bicycles 1 
Connect Agent 

Disconnect Agent 
(A) 

Change Agent 
(B) 

Change Bike (C) 

Switch Bikes (D) 
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Suggested Moves – Bicycles 2 
Connect Drop-Pick 

Disconnect Drop-Pick 
(E) 

(F) Change Drop 

(G) Change Pick 

(H) Switch Drop-Pick 
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MCMC General Algorithm 
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Examples 

Drop 

Pick 

Pick-Drop 

Dropping 

Picking 

Pass-by 

110 1 

311 4 

385 

329 

343 3 

407 

994 

9 

12 1173 

319 5 

Select move 
type 

Switch Agents 

603 
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Examples 

Drop 

Pick 

Pick-Drop 

Dropping 

Picking 

Pass-by 

110 1 

311 4 

385 

329 

343 3 

407 

994 

9 

12 1173 

319 5 

Switch Agent 
Specific dist. 

407, 343 

603 

α = 1.0 
U = 0.33 

Move Accepted 
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Examples 

Drop 

Pick 

Pick-Drop 

Dropping 

Picking 

Pass-by 

110 1 

311 4 

385 

329 

343 

3 407 

994 

9 

12 1173 

319 5 

Switch Drop-
Pick. 

(319,603), (385,1173) 

nmc =2 

603 

α = 1.0 
U = 0.24 

Move Accepted 
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Examples 

Drop 

Pick 

Pick-Drop 

Dropping 

Picking 

Pass-by 

110 1 

311 4 

385 

329 

343 

3 407 

994 

9 

12 1173 

319 5 

Disconnect 
Agent. 

343 

nmc =3 

603 

α = 0.11 
U = 0.74 

Move Rejected 
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Examples 

Drop 

Pick 

Pick-Drop 

Dropping 

Picking 

Pass-by 

110 1 

311 4 

385 

329 

343 

3 407 

994 

9 

12 1173 

319 5 

Connect 
Agent 

329 

nmc =4 

603 

α = 0.91 
U = 0.36 

Move Accepted 
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MCMC General Algorithm 
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Dataset 
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Dataset 

1 2 3 4 5 6 7 

Duration 1h 1h 11h 12h 12h 15h 15h 

Drops 24 11 20 20 14 28 39 

Picks 20 12 19 10 13 17 41 

Drop-
picks 20 11 18 20 13 14 22 
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Results 



38/47 

Results 
Split MCMC SAMCMC 

MAP ACC MAP ACC MAP ACC 
1 102.3 72.41 57.9 91.38 57.9 91.38 

2 23.5 85.19 4.6 100.00 4.6 100.00 

3 609.7 58.59 429.0 88.28 422.3 89.84 

4 6272.7 73.81 6077.3 83.33 6083.7 87.30 

5 5034.5 89.05 4944.7 94.89 4937.1 94.16 

6 860.4 66.07 815.8 71.43 808.4 76.79 

7 934.4 45.69 681.2 48.22 658.23 51.78 
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Detecting carried objects from Silhouettes 

I. Haritaoglu, R. Cutler, D. Harwood, and L. S. Davis. Backpack: detection of 
people carrying objects using silhouettes. In Proc. Int. Conf. on Computer 
Vision (ICCV), volume 1, pages 102–107, 1999. 
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Haritaoglu’s work 
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Our Method (Damen and Hogg, ECCV 08) 
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Another Example 
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Another Example 
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Another Example 
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Demo 

New 
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Current and Future Work 
l Grammar-based representation of events of 

hierarchies 
l Automated method to solve similar problems 
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Thank you J 
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