

Challenges and Opportunities for **Action and Activity Recognition** using RGBD Data

BMVA Symposium on Analysis and Processing of RGBD Data

Activity Recognition Hierarchy

Most

Expensive

Most

Wearable/Moveable

- Current affordable RGBD sensors calculate depth on per-frame basis
- They make little usage of the temporal aspect
- Not ideal for action and activity recognition

Usage of RGBD data for Action & Activity

Three main usages of RGBD sensors in action and activity recognition

- 1. Separation of Objects at various depths
 - Foreground or Occluder Subtraction
- 2. Pose Estimation
 - Accurate positioning of body joints
- 3. Depth from sensor measurements
 - Applications that require accurate depth estimation

Usage of RGBD data for Action & Activity

Three main usages of RGBD sensors in action and activity recognition

- 1. Separation of Objects at various depths
 - Foreground or Occluder Subtraction
- 2. Pose Estimation
 - Accurate positioning of body joints
- 3. Depth from sensor measurements
 - Applications that require accurate depth estimation

Traditionally

Using background subtraction

 Could be achieved from an individual image by 3D scene analysis

https://www.youtube.com/watch?v=NyjyGuESkf

M#t=1m33s

Carried Object Detection

Carried Object Detection

Carried Object Detection + RGBD

Depth

Carried Object Detection ++

Depth

Carried Object Detection ++

Usage of RGBD data for Action & Activity

Three main usages of RGBD sensors in action and activity recognition

- 1. Separation of Objects at various depths
 - Foreground or Occluder Subtraction
- 2. Pose Estimation
 - Accurate positioning of body joints
- 3. Depth from sensor measurements
 - Applications that require accurate depth estimation

Skeleton Detection

- OpenNI 2.0
 - nite::UserTracker::startSkeletonTracking()
 - nite::Skeleton::getJoint()
- Kinect SDK 2.0
 - skeletonData = new Skeleton[kinect.SkeletonStream.FrameSkeletonArrayLength];

Skeleton Detection

- OpenNI 2.0
 - nite::UserTracker::startSkeletonTracking()
 - nite::Skeleton::getJoint()
- Kinect SDK 2.0
 - skeletonData = new Skeleton[kinect.SkeletonStream.FrameSkeletonArrayLength];

Why skeleton detection?

- View-variant features
 - Hollywood 2 dataset, action class: sit_down

Why skeleton detection?

Should be view-invariant... but!

Skeleton detection for action and activity recognition

- Depth-based features
- Joint-based features
- Hybrid features

Action recognition

Having some predefined action classes, the aim is to recognize the class label of an action.

Action recognition

Having some predefined action classes, the aim is to recognize the class label of an action.

Pull-vs-pick

What if the observed action is not fully completed!?

Complete pull

Incomplete pull

Complete pull and incomplete pull are introduced to pull-vs-pick classifier.

Both complete pull and incomplete pull are classified as pull.

Action Completion as a step beyond action recognition

- Action completion aims to recognise whether the action's goal has been successfully achieved.
- In many actions, an observer would be able to make the distinction between complete and incomplete by noticing subtle differences in motion.
- Incompletion could result from negligence or forgetfulness, difficulties in performing the action, or could be deliberate.
- We recognise incompletion when the action is attempted but not completed.

Features and temporal encoding

A pool of five depth features:

- Local Occupancy Pattern (LOP)¹
- Joints Position (JP)²
- Joints Relative Position (JRP)²
- Joints Relative Angle (JRA)²
- Joints Velocity (JV)²

LOP: Depth information in the neighbourhood around each joint

Encoding temporal dynamics by Fourier temporal pyramid¹

Different levels of Fourier temporal pyramid

- Notion of completion differs per action \rightarrow we need a pool of features.
- To choose the most discriminative feature per action:

A general method: "Leave-one-person-out" cross validation on the training set

- Evidence across folds is accumulated.
- Each feature in the pool of features is ranked by their accuracy.
- The feature(s) that performs the best is selected.

with: Farnoosh Heidarivincheh Majid Mirmehdi

Action Completion from RGB-D Data

Bristol Action Completion Dataset

- Containing 414 sequences of complete and incomplete actions
- Comprising 6 actions: switch, plug, open, pull, pick, drink

	total #	# complete	# incomplete	$\mu(sec)$	$\sigma(sec)$
switch	67	35	32	3.87	0.72
plug	73	37	36	8.14	2.74
open	68	36	32	6.83	2.70
pull	71	34	37	6.43	1.70
pick	69	33	36	4.03	1.16
drink	66	34	32	8.83	2.09

Bristol Action Completion Dataset

incomplete

switch

complete

incomplete

pull

plug

pick

drink

open

with: Farnoosh Heidarivincheh Majid Mirmehdi

Action Completion from RGB-D Data

Experiment A: Complete Action Recognition

complete sequences were used in training and testing by a one-vs-all SVM.

	LOP	JP	JRP	JRA	JV
switch	100	99	99	100	100
plug	99	92.3	91.9	92.8	97.1
open	97.6	98.1	100	94.7	94.3
pull	98.1	91.4	91.4	94.7	92.3
pick	97.6	99.5	100	96.7	95.2
drink	99	97.1	98.1	99	100
Average	98.6	96.3	96.7	96.3	96.5

Various features perform comparably with high % accuracy.

Experiment B: Incomplete Action Recognition

- Complete samples were used for training.
- Incomplete test sequences were classified by finding their nearest neighbour.

• Only some features distinguish the subtle changes between complete and incomplete.

switch plug open pull pick drink

switch plug open pull pick drink

Experiment C: Complete-vs-Incomplete Action Recognition

Complete and incomplete samples of the same action were used in training and testing

	LOP	JP	JRP	JRA	JV
switch	100	85.1	85.1	100	100
plug	83.6	87.7	78.1	79.5	94.5
open	97.1	95.6	97.1	95.6	97.1
pull	87.3	71.8	77.5	88.7	94.4
pick	92.8	94.2	98.6	98.6	95.7
drink	97	97	97	97	100

Again, the features have different success rates for the various actions.

with: Farnoosh Heidarivincheh Majid Mirmehdi

Action Completion from RGB-D Data

Experiment D: Selecting Features for Action Completion

A general model using cross validation on training data

	Subjects									
	1	2	3	4	5	6	7	8	total	
switch plug open pull pick	100	100	100	100	100	100	100	100	100	
	LOP,JRA,JV	LOP,JRA,JV	$_{ m LOP,JV}$	$_{ m LOP,JV}$	LOP,JV	LOP,JRA,JV	$_{ m LOP,JV}$	$_{ m LOP,JV}$	100	
plug	83.3	100	87.5	100	88.9	100	100	100	94.5	
	JV	JV	JV	JV	JV	JV	JV	JV	54.0	
onen	100	85.7	100	100	100	87.5	90	100	95.6	
open	JV	JV	$_{ m JP,JRP}$	$_{ m LOP,JRP,JV}$	JRP	JRA	JV	LOP,JRP,JRA,JV	30.0	
mul1	88.9	100	100	100	100	87.5	80	100	94.4	
Patt	JV	JV	JV	$_{ m JRA,JV}$	JV	JV	100 100 LOP,JV LOP,JV 100 100 JV JV 90 100 JV LOP,JRP,JRA,JV	JV		
nick	90	100	100	100	100	100	50	100	92.8	
Peck	JRA	$_{ m JRA}$	$_{ m JRA,JV}$	$_{ m JP,JRA}$	JRA	JRP,JRA	LOP,JRA	$_{ m JRA}$	32.0	
drink	77.8	100	100	100	100	100			97	
	LOP,JP,JRP,JRA,JV	JV	JV	JV	JV	JV	JV	JV	31	
								total	95.7	

Results show high success rates compared to the best performance in complete-vs-incomplete action recognition

Action Completion from RGB-D Data

Examples of success

Complete switch Classified as complete switch

Incomplete open Classified as incomplete open

Action Completion from RGB-D Data

Examples of failure

Complete drink Classified as incomplete *drink*

Incomplete pull Classified as complete pull

Usage of RGBD data for Action & Activity

Three main usages of RGBD sensors in action and activity recognition

- 1. Separation of Objects at various depths
 - Foreground or Occluder Subtraction
- 2. Pose Estimation
 - Accurate positioning of body joints
- 3. Depth from sensor measurements
 - Applications that require accurate depth estimation

The need for (exact) depth measurements

- 1. Localisation and mapping
 - Wearable RGBD Task monitoring
- 2. Tracking change in depth
 - Breathing monitoring and Remote Pulmonary **Function Testing**
- 3. Distance measurements (in metres)
 - Functional mobility testing
 - Routine analysis

- EU FP7 (2010 2013)
- COGNITO: Cognitive Workflow Capturing and Rendering with On-Body Sensor Networks
- Fully-Wearable Sensors

with: Andrew Gee Andrew Calway Walterio Mayol-Cuevas

+ collaborators

with: Andrew Gee **Andrew Calway** Walterio Mayol-Cuevas

+ collaborators

with: Andrew Gee **Andrew Calway** Walterio Mayol-Cuevas

+ collaborators

Egocentric Real-time Workspace Monitoring using an RGB-D Camera

Dima Damen, Andrew Gee Walterio Mayol-Cuevas, Andrew Calway

with: Andrew Gee Andrew Calway Walterio Mayol-Cuevas

+ collaborators

Obj	Recall	Precision
Ball	81%	12%
Bearing	23%	83%
Box	63%	92%
Box Cover	53%	48%
Screw Driver	15%	34%
Spanner	57%	29%
Rod	60%	49%

with: Andrew Gee **Andrew Calway** Walterio Mayol-Cuevas

+ collaborators

Obj	Recall	Precision			
Screw Driver	15%	34%			
Spanner	57%	29%			

G Bleser et al (2015). Cognitive Learning, Monitoring and Assistance of Industrial Workflows Using Egocentric Sensor Networks. PLOS ONE

D Damen et al (2012). Real-time Learning and Detection of 3D Texture-less Objects: A Scalable Approach. British Machine Vision Conference (BMVC)

D Damen et al (2012). Egocentric Real-time Workspace Monitoring using an RGB-D Camera. IEEE/RSJ International Conference on Intelligent Pohets and Systems

Dima Damen 22 March 2017

with: Andrew Gee
Andrew Calway
Walterio Mayol-Cuevas

+ collaborators

D Damen et al (2012). Real-time Learning and Detection of 3D Texture-less Objects: A Scalable Approach. *British Machine Vision Conference (BMVC)*

Dima Damen

with: Longfei Chen Kazuaki Kondo Yuichi Nakamura Walterio Mayol-Cuevas

with: Longfei Chen Kazuaki Kondo Yuichi Nakamura Walterio Mayol-Cuevas

with: Vahid Soleimani Majid Mirmehdi Sion Hannuna Massimo Camplani

Remote Pulmonary Function Testing

Anxiety Detection

Anxiety Detection

Remote Pulmonary Function Testing

Biomedical Circuits and System Conferences

Biomedical Engineering

Remote Pulmonary Function Testing

- Two Kinects facing each other with ~3m distance.
- Subject sits in between on a backless chair.
- Since Kinects capture separate sides, there is no interference by this setup.
- Using 3 double sided chessboards to increase calibration accuracy.

with: Vahid Soleimani Majid Mirmehdi Sion Hannuna Massimo Camplani

Two Facing Kinects

Double sided chessboards setup

Recording a subject performing breathing test

with: Vahid Soleimani Majid Mirmehdi Sion Hannuna Massimo Camplani

Two Facing Kinects

Point clouds are aligned and registered to a joint coordinate system.

Two Facing Kinects

- Quantitative assessment:
 - Using three differently sized boxes in three locations.
 - Performing <u>surface analysis</u> and automatically estimating dimension, volume, surface planarity and angles.

with: Vahid Soleimani Majid Mirmehdi Sion Hannuna Massimo Camplani

Two Facing Kinects

with: Vahid Soleimani Majid Mirmehdi Sion Hannuna Massimo Camplani

Two Facing Kinects

307 sequences of lung function assessment were recorded from 35 subjects using the proposed system.

Functional Mobility Testing

Turn 180° Test: ask the patient to stand up, turn around until the patient facing the opposite direction and, walk towards a specified target.

Different measures observed during turning:

- Direction of turning
- Number of steps
- Turn Time (s)
- Turn Quality
- Turn Type

with: Hana Alghamdi Majid Mirmehdi + SPHERE team

+ collaborators

Functional Mobility Testing

Best Case

Worst Case

Unsupervised Routine Modelling

A person's routine is the common or regular course of action, over a timescale (e.g. daily routine)

Detecting routine changes or out-ofroutine activities is essential for monitoring physical as well as mental wellbeing

wash

Watel

with: Yangdi Xu Dave Bull

Unsupervised Routine Modelling

with: Yangdi Xu Dave Bull

Unsupervised Routine Modelling

Graphical Model

- *A_t*: Activity state
- L_t : Location state
- H_t : poses state
- E_t : Time envelope state

Unsupervised Routine Modelling

Transitions in spatial and silhouette data are capable of discovering discove

Add Milk:

worktop (r_3) -> fridge (r_4) -> worktop (r_3)

No Frequent Transition

with: Yangdi Xu Dave Bull

Unsupervised Routine Modelling

Ground Truth

Number of frames

$$M(x,y) = \frac{\sum\limits_{P_{gt}^{i}=x}^{\sum}\sum\limits_{P_{gt}^{j}=y}^{C(P_{es}^{ij},P_{gt}^{i}) + C(P_{es}^{ij},P_{gt}^{j})}{|\{P_{gt}^{i}=x\}| \quad |\{P_{gt}^{j}=y\}\|}$$

with: Yangdi Xu Dave Bull

Unsupervised Routine Modelling

	wash	Prepare tea	Get milk	Get hot water	Get cold water	Put cup	Make porridge
wash	- 0.93	0.06	0.00	0.30	0.05	0.34	0.03
Prepare tea	0.06	0.70	0.09	0.13	0.16	0.15	0.77 -
Get milk	0.00	0.09	0.86	0.03	0.33	0.03	0.06
Get hot water	0.30	0.13	0.03	0.87	0.27	0.70	0.20
Get cold water	0.05	0.16	0.33	0.27	0.61	0.23	0.51 -
Put cup	0.34	0.15	0.03	0.70	0.23	0.50	0.24
Make porridge	0.03	0.77	0.06	0.20	0.51	0.24	0.00

Unsupervised Routine Modelling

- Dataset of 3 people for 7 days
- Results show that using time envelope is helpful in discovering routine activities
 - More patterns are discovered
 - Better temporal overlap between discovered pattern and ground truth

Xu et al (2015), Unsupervised Daily Routine Modeling from a Depth Sensor using Bottom-Up and Top-Down Hierarchies. *Asian* Conference on Pattern Recognition

Hardware Platform (v2.0)

- RGB-D Asus Xtion
 - SOTA people detection and tracking with low computational burden
- The Intel Next Unit of Computing (NUC) with 8GB of RAM and an i5 processor
 - Small, attractive, powerful and able to support up to 4 Xtions at full resolution

Hardware Platform (v2.0)

- **RGB-D Asus Xtion**
 - SOTA people detection and tracking with low computational burden
- The Intel Next Unit of Computing (NUC) with 8GB of RAM and an i5 processor
 - Small, attractive, powerful and able to support up to 4 Xtions at full resolution

Looking forward: Recruitment of 100 homes?

Conclusion

- Current RGBD sensors are not ideal for action and activity recognition due to their per-frame calculation of depth information
- Three main usages of RGBD data in action and activity recognition
- Applications for action recognition where accurate depth estimation is required
- Storage requires for long-term usage is an obstacle for expanded usage of RGBD in action and activity recognition

Thank you...

Dima Damen

http://www.cs.bris.ac.uk/~damen

@dimadamen

http://www.linkedin.com/in/dimadamen

VI-Lab, University of Bristol http://vilab.blogs.ilrt.org

SPHERE - a Sensor Platform for HEalthcare in a Residential Environment

http://www.irc-sphere.ac.uk/

@IRC SPHERE

https://www.facebook.com/pages/Sphere

